Syntheses and structures of 3-stannylcholest-5-ene species

Heather J. Buchanan, ${ }^{a}$ Philip J. Cox, ${ }^{b}$ Solange M. S. V. Doidge-Harrison, ${ }^{c}$ R. Alan Howie, ${ }^{a}$ Marcel Jaspars ${ }^{a}$ and James L. Wardell ${ }^{*, a}$
${ }^{a}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, UK AB24 3UE
${ }^{b}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen, UK AB10 1 FR
${ }^{c}$ School of Applied Sciences, The Robert Gordon University, St. Andrews St., Aberdeen, UK AB25 1HG

Abstract

The compounds, 3α - and 3β-triphenylstannylcholest-5-ene, 1 and 2 respectively, have been prepared stereospecifically in reactions of $\mathrm{Ph}_{3} \mathrm{SnLi}$ with cholesteryl methane- or toluene- p-sulfonates, and of $\mathrm{Ph}_{3} \mathrm{SnCl}$ with the Grignard reagent from cholesteryl chloride, respectively. Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral assignments for 1 have been obtained using HMBC and HMQC techniques: these have been used to aid the ${ }^{13} \mathrm{C}$ NMR spectral assignments for 2 and 3α - and $3 \beta-\left(\mathrm{I}_{n} \mathrm{Ph}_{3-n} \mathrm{Sn}\right)$ cholest-5-enes ($n=1 \mathbf{1}$) (9-12). Crystal structure determinations of $3 \alpha-\left(\mathrm{IPh}_{2} \mathrm{Sn}\right)$ cholest-5-ene 9 and $3 \alpha-\left(\mathrm{I}_{2} \mathrm{PhSn}\right)$ cholest-5-ene 10 indicate distorted tetrahedral geometries about the tin centres in both compounds. The $\mathrm{Sn}-\mathrm{I}$ bond lengths are $2.731(5) \AA$ in 9 and between 2.6979(12) and 2.7173(12) \AA in 10 . Despite the similarity in the values (ca. 60°) of the dihedral angles, $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)[\mathrm{C}(1)$ aliphatic carbon] and $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)[\mathrm{C}(5)$ olefinic carbon], the values of ${ }^{3} J\left[{ }^{119} \mathrm{Sn}^{-13} \mathrm{C}(1)\right]$ are about twice the ${ }^{3} J\left[{ }^{19} \mathrm{Sn}-{ }^{13} \mathrm{C}(5)\right]$ values in each of 1,9 and 10 ; in contrast, ${ }^{3} J\left[{ }^{119} \mathrm{Sn}^{-13} \mathrm{C}(1)\right]$ and ${ }^{3} J\left[{ }^{119} \mathrm{Sn}^{-13} \mathrm{C}(5)\right]$ values are essentially the same in each of 2,11 and 12 $\left[\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)\right.$ and $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) c a .180^{\circ}{ }^{\circ}$.

Introduction

Interest in organotin derivatives of natural products has been maintained over a long period of time for diverse reasons: biological activities (especially anti-tumour activities), ${ }^{1,2}$ chemical reactivities ${ }^{3}$ and structure determinations ${ }^{46}$ have all featured, for example, in the publications on stannylated steroids, which date ${ }^{7}$ from 1970. The linking of the stannyl moieties to the steroid residues has involved not only $\mathrm{Sn}-\mathrm{O}$ bonds (e.g. in alkoxide and carboxylate derivatives $)^{2,8,9}$ but also $\mathrm{Sn}-\mathrm{C}$ bonds. ${ }^{3-7,10}$ While steroids are generally hydrophobic molecules, they can contain a variety of organic functional groups, which strongly influence their properties. Reported tin-carbon bonded triorganostannyl steroids include the non-functionalised saturated alkyl compounds, 3α - and 3β-triorganostannyl-cholest- 5α-anes (organo group $=\mathrm{Me}$ or Ph), ${ }^{7}$ and their monoene analogues, 3α - and 3β-triphenylstannylcholest- 5 -enes ($\mathbf{1}$ and $\mathbf{2}$, respectively) ${ }^{7}$ and 3α-(triphenylstannyl)cholest-4-ene 3. ${ }^{3} 7 \alpha$-(Triphenylstannyl)cholest-5-en-3 β-ol 4, 7α-(triorgano-stannyl)cholest-5-en-3-one (5; organo group $=\mathrm{Ph}$ or Bu), 3-methoxy-19-norpregna-1,3,5,17,20-pentaen-21-yl triphenylstannane $6,{ }^{10}[(Z)$-17-(2-triphenylstannyl)vinyl]estr-4-en-17 β-ol 7^{4} and (20Z)-3-methoxy-17-[2-(triphenylstannyl)vinyl]estra-$1,3,5(10)$-trien-17 3 -ol $\mathbf{8}^{6}$ illustrate well the diversity of the functionalised derivatives. Iodophenylstannyl analogues of 7 have also been reported. ${ }^{4}$
Structural studies of stannylated steroids are limited. Crystal structures have been determined for two compounds, $\mathbf{1}^{5}$ and $7 .{ }^{4 a}$ In addition, NMR methods (HMQC-RELAY, NOESY etc.) have been used to obtain solution structures and conformations of $7^{4 b}$ and $8{ }^{6}{ }^{6}$ Compounds 7 and 8 are two of the few tetraorganotin species to contain other than four-coordinate tin atoms, as consequences of the intramolecular coordination of hydroxy groups to the tin centres. As previously shown, ${ }^{5}$ the tetraorganostannane $\mathbf{1}$ is more typically four-coordinate in the solid state. In this study we have carried out the complete ${ }^{13} \mathrm{C}$ NMR assignments of $\mathbf{1 , 2}$ and their iodophenyl analogues $3 \alpha-$ and $3 \beta-\left(\mathrm{I}_{n} \mathrm{Ph}_{3-n} \mathrm{Sn}\right)$ cholest-5-enes (9-12) and have determined

$2 \mathrm{R}^{\prime \prime}=\mathrm{Ph}_{3} \mathrm{Sn} \cdot \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$4 \mathrm{R}^{\prime \prime}=\mathrm{OH} ; \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Ph}_{3} \mathrm{Sn}$
$5 \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{O} ; \mathrm{R}=\mathrm{Ph}_{3} \mathrm{Sn}$ or $\mathrm{Bu}_{3} \mathrm{Sn}$
$9 \mathrm{R}^{\prime}=\mathrm{IPh}_{2} \mathrm{Sn} ; \mathrm{R}^{\prime \prime}=\mathrm{R}=\mathrm{H}$
$10 \mathrm{R}^{\prime}=\mathrm{I}_{2} \mathrm{PhSn} ; \mathrm{R}^{\prime \prime}=\mathrm{R}=\mathrm{H}$
$11 \mathrm{R}^{\prime \prime}=\mathrm{IPh}_{2} \mathrm{Sn} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$12 \mathrm{R}^{\prime \prime}=\mathrm{I}_{2} \mathrm{PhSn} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$13 \mathrm{R}^{\prime \prime}=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$14 \mathrm{R}^{\prime \prime}=\mathrm{OH} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$15 \mathrm{R}^{\prime \prime}=\mathrm{MeSO}_{3} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$
$16 \mathrm{R}^{\prime \prime}=\mathrm{Cl} ; \mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}$

the X-ray structures of 3α-(iododiphenyl)stannylcholest-5-ene 9 and 3α-(diiodophenyl)stannylcholest-5-ene $\mathbf{1 0}$.

Scheme 1 Reagents: (i) $\mathrm{RS}(\mathrm{O})_{2} \mathrm{Cl}\left(\mathrm{R}=\mathrm{Me}\right.$ or $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$, pyridine; (ii) $\mathrm{Ph}_{3} \mathrm{SnLi}$; (iii) $n \mathrm{I}_{2}$; (iv) $\mathrm{S}(\mathrm{O}) \mathrm{Cl}_{2}$; (v) $\mathrm{Mg}, \mathrm{Ph}_{3} \mathrm{SnCl}$

Results and discussion

Synthesis

The syntheses of tetraorganotin compounds from $\mathrm{R}_{3} \mathrm{SnLi}$ and alkyl halides and tosylates have been widely studied, the mechanisms and stereochemistries of these reactions having attracted particular attention. ${ }^{11-13}$ Reactions of $\mathrm{R}_{3} \mathrm{SnLi}$ compounds with secondary alkyl tosylates generally occur with inversion of configuration, ${ }^{11 a, 14,15}$ as further illustrated in this study by the formation of $\mathbf{1}$ from $\mathrm{Ph}_{3} \mathrm{SnLi}$ and cholesterol sulfonates, Scheme 1.

Another stereospecific reaction, but with overall retention of configuration, occurred between $\mathrm{Ph}_{3} \mathrm{SnCl}$ and the Grignard reagent from 3β-chlorocholest- 5 -ene $\mathbf{1 6}$ in THF with the formation of 2, Scheme 1. The stereochemistry of reactions of alkylGrignard reagents with organotin halides are dependent on the alkyl halides RX , e.g. reactions of $\mathrm{Me}_{3} \mathrm{SnCl}$ with (i) the 4-tert-butylcyclohexyl-Grignard reagent provided ${ }^{15}$ predominantly trans-4-tert-butylcyclohexyltrimethyltin, (ii) the Grignard reagent from $>95 \%$ cis-4-methylcyclohexyl bromide gave ${ }^{14}$ only trans-4-methylcyclohexylstannanes and (iii) the Grignard reagent from exo-2-norbornane produced ${ }^{16}$ an exo-endo mixture of 2-trimethylstannylnorbornane.

Zimmer and Bayless obtained ${ }^{7} \mathbf{1}$ from the reaction of 3β-chlorocholest-5-ene with $\mathrm{Ph}_{3} \mathrm{SnLi}$, while both 1 and 2 were produced from 3β-iodocholest- 5 -ene and $\mathrm{Ph}_{3} \mathrm{SnLi}$. We found in this study that the one-pot Barbieri-type reaction of 16, Li and $\mathrm{Ph}_{3} \mathrm{SnCl}$ in THF also produced both the α - and β-epimers, in a 1:2 ratio, based on peak heights in the ${ }^{119} \mathrm{Sn}$ NMR spectrum.

The iododephenylation products, 9-12, were obtained from reactions of $\mathbf{1}$ and $\mathbf{2}$ with iodine. Attempts were made to obtain samples of $\mathbf{9 - 1 2}$ as well as $\mathbf{2}$ for X-ray crystallography, however, suitable crystals were only obtained for $\mathbf{9}$ and $\mathbf{1 0}$.

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 9

$\mathrm{Sn}-\mathrm{C}(28)$	$2.14(2)$	$\mathrm{Sn}-\mathrm{C}(34)$	$2.159(11)$
$\mathrm{Sn}-\mathrm{C}(3)$	$2.16(2)$	$\mathrm{Sn}-\mathrm{I}$	$2.731(5)$
$\mathrm{C}(28)-\mathrm{Sn}-\mathrm{C}(3)$	$111.6(6)$	$\mathrm{C}(34)-\mathrm{Sn}-\mathrm{C}(3)$	$121.7(5)$
$\mathrm{C}(28)-\mathrm{Sn}-\mathrm{C}(34)$	$107.3(3)$	$\mathrm{C}(34)-\mathrm{Sn}-\mathrm{I}$	$104.5(2)$
$\mathrm{C}(3)-\mathrm{Sn}-\mathrm{I}$	$105.0(3)$	$\mathrm{C}(28)-\mathrm{Sn}-\mathrm{I}$	$105.3(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Sn}$	$110.9(9)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Sn}$	$112.4(7)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{Sn}$	$119.8(4)$	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{Sn}$	$120.1(6)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{Sn}$	$119.4(4)$	$\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{Sn}$	$120.6(4)$

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathbf{1 0}$

$\mathrm{Sn}(1)-\mathrm{C}(28)$	$2.149(14)$	$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{C}\left(28^{\prime}\right)$	$2.139(14)$
$\mathrm{Sn}(1)-\mathrm{C}(3)$	$2.187(13)$	$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$2.160(13)$
$\mathrm{Sn}(1)-\mathrm{I}(1)$	$2.709(2)$	$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(1^{\prime}\right)$	$2.6979(12)$
$\mathrm{Sn}(1)-\mathrm{I}(2)$	$2.7173(12)$	$\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	$2.7072(14)$
$\mathrm{C}(28)-\mathrm{Sn}(1)-\mathrm{C}(3)$	$126.0(5)$	$\mathrm{C}\left(28^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$129.7(4)$
$\mathrm{C}(28)-\mathrm{Sn}(1)-\mathrm{I}(1)$	$106.3(3)$	$\mathrm{C}\left(28^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(1^{\prime}\right)$	$106.3(3)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{I}(1)$	$107.6(4)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(1^{\prime}\right)$	$102.6(4)$
$\mathrm{C}(28)-\mathrm{Sn}(1)-\mathrm{I}(2)$	$105.3(3)$	$\mathrm{C}\left(28^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	$105.5(3)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{I}(2)$	$104.2(3)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	$106.3(3)$
$\mathrm{I}(1)-\mathrm{Sn}(1)-\mathrm{I}(2)$	$105.72(4)$	$\mathrm{I}\left(1^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)-\mathrm{I}\left(2^{\prime}\right)$	$107.21(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Sn}(1)$	$110.9(10)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)$	$110.9(10)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Sn}(1)$	$109.2(8)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)$	$110.8(8)$
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{Sn}$	$121.2(11)$	$\mathrm{C}\left(33^{\prime}\right)-\mathrm{C}\left(28^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)$	$119.9(10)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{Sn}(1)$	$121.4(10)$	$\mathrm{C}\left(29^{\prime}\right)-\mathrm{C}\left(28^{\prime}\right)-\mathrm{Sn}\left(1^{\prime}\right)$	$120.4(9)$

Fig. 1 Atom numbering arrangement for 9. Thermal ellipsoids drawn at 40%.

Fig. 2 Atom numbering arrangement for 10 (molecule 1). Thermal ellipsoids drawn at 40%.

Crystal structure of 9

Selected bond lengths are listed in Table 1. Fig. 1 shows the atom arrangements. The tin atom in 9 has a distorted tetrahedral geometry, with bond angles at tin ranging from 104.5(2) to $121.7(5)^{\circ}$; the largest angle is for $\mathrm{C}(34)-\mathrm{Sn}-\mathrm{C}(3)$, while the three smallest angles [104.5(2) to 105.3(4)] are C-Sn-I angles. The $\mathrm{Sn}-\mathrm{C}$ bond lengths are in the range 2.14(2) to 2.159(11) \AA and are unexceptional. The $\mathrm{Sn}-\mathrm{I}$ bond length is 2.731(5) \AA and is at the higher end of the range ($2.69-2.73 \AA$) found for $\mathrm{Sn}-\mathrm{I}$ bond lengths in tetrahedral, tetracoordinate $\mathrm{R}_{3} \mathrm{SnI}$ molecules. ${ }^{17}$ There are no intermolecular $\mathrm{Sn} \cdots \mathrm{I}$ or $\mathrm{I} \cdots \mathrm{I}$ interactions close to the appropriate sums of the van der Waals radii.

Crystal structure of 10

Selected bond lengths are listed in Table 2. Fig. 2 shows the atom arrangements. There are two independent molecules in

Table 3 Torsion angles $\left({ }^{\circ}\right)$ involving carbon atoms in ring A of $\mathbf{9}, \mathbf{1 0}$ and $\mathbf{1}$ in the solid state
10

Torsion angle	9	molecule 1		molecule 2	$\mathbf{1}^{a}$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Sn}$	$-67.7(11)$	$-64.9(12)$	$-62.6(12)$	$-67(2)$	$-72(2)$
$\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$66.6(11)$	$66.9(12)$	$65.8(10)$	$69(2)$	$70(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$55.5(12)$	$57(2)$	$57.6(14)$	$59(2)$	$58(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-57.5(12)$	$-55.6(14)$	$-55.7(14)$	$-55(2)$	$-59(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$53.9(13)$	$52.1(13)$	$51.9(13)$	$50(2)$	$52(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	$-42.8(12)$	$-45.8(13)$	$-44.9(13)$	$-43(2)$	$-44(2)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	$39.4(12)$	$44.7(13)$	$43.4(12)$	$45(2)$	$47(2)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-48.3(13)$	$-52.1(14)$	$-52.5(13)$	$-55(2)$	$-54(2)$

${ }^{a}$ Ref. 5.
the unit cell. These are arranged about a pseudo inversion centre at $0.185,0.027,0.033$: approximately 75% of the atoms in 10 are related by this feature. One of the molecules, molecule 2 , shows disorder in the $\mathrm{C}(17)$ side chain with two positions for each of the atoms, $C(25), C(26)$ and $C(27)$; in contrast, no disorder is found in molecule 1. The tin atoms in $\mathbf{1 0}$ have distorted tetrahedral geometries, the largest angle in each molecule being the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle: $\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{C}(28)=126.0(5)$ and $\mathrm{C}\left(3^{\prime}\right)-$ $\operatorname{Sn}\left(1^{\prime}\right)-\mathrm{C}\left(28^{\prime}\right)=129.7(4)$, in molecules 1 and 2, respectively. The other angles at tin occur in the narrow ranges, 104.2(3) to $107.6(4)$ and $102.6(4)$ to $107.21(4)^{\circ}$. The $\mathrm{Sn}-\mathrm{C}$ bond lengths are within the expected range. The $\mathrm{Sn}-\mathrm{I}$ bond lengths are shorter than that found in 9, being $2.709(2)$ and $2.7173(12) \AA$ in molecule 1, and $2.6979(12)$ and $2.7072(14)$ in molecule 2. These are very similar to the values, $2.6980(9)$ and $2.7106(10) \AA$, determined in $\mathrm{I}_{2} \mathrm{PhSn}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SnPhI}_{2}$, another distorted tetrahedral, tetracoordinate alkylaryltin diiodide. ${ }^{18}$ As with 9 , there are no intermolecular $\mathrm{Sn} \cdot \mathrm{I}$ I or $\mathrm{I} \cdot \cdot$ I interactions close to the appropriate sums of the van der Waals radii.

Comparison of crystal structures. As shown by the similar dihedral angles for the A rings in $\mathbf{1 , 9}$ and $\mathbf{1 0}$, no significant structural change occurs on iodide substitution of phenyl groups in 1, see Table 3: the ring conformations in the cholestene moiety of $\mathbf{9}$ and $\mathbf{1 0}$ are generally very similar to those determined previously ${ }^{5}$ for $\mathbf{1}$ and for $\mathbf{1 3} .^{19}$ In each of $\mathbf{1 , 9}$ and 10, a phenyl ring lies under the A ring of the cholestene moiety.

NMR Spectra

In order to identify unambiguously $\delta^{13} \mathrm{C}$ and $J(\mathrm{Sn}-\mathrm{C})$ values with particular carbon atoms in 1,2 and $\mathbf{9 - 1 2}$, a complete assignment of the NMR spectra of 1 was carried out using HMQC ${ }^{16}$ and HMBC^{17} NMR spectra, obtained at 150.8 MHz and the known ${ }^{13} \mathrm{C}$ NMR shifts for cholesterol (Table 4). ${ }^{18}$ The major deviations from the cholesterol chemical shifts occurred in the A ring due to the effect of the triphenylstannyl moiety. That $\mathrm{C}(3)$ in $\mathbf{1}$ was at $\delta 31.93 \mathrm{ppm}[c f$. the value $\delta 71.3 \mathrm{ppm}$ for $\mathrm{C}(3)$ of cholesterol] was certain because of the large $J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$ and $J\left({ }^{117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$ values $(435,416 \mathrm{~Hz}$, respectively) associated with this resonance. The three remaining A ring methylene carbon atoms had $\delta^{13} \mathrm{C}=38.52,36.67$ and 26.58 ppm with values of $J\left({ }^{19,117} \mathrm{Sn}-{ }^{3} \mathrm{C}\right)=15,11,13 \mathrm{~Hz}$, respectively. As these methylene carbons could neither be assigned simply from the values of the carbon-tin coupling constants nor by analogy with the $\delta^{13} \mathrm{C}$ values of cholesterol, HMBC was used. The double bond proton, $\mathrm{H}(6)\left(\delta^{1} \mathrm{H}=5.14\right)$, was used as the starting point for this analysis. An HMBC correlation was observed between the signal, $\delta^{13} \mathrm{C}$ at 36.67 and that for $\mathrm{H}(6)$; thus $\mathrm{C}(4)$ was considered to have $\delta^{13} \mathrm{C}$ at 36.67 . Similarly, a correlation was observed between the signal $\delta^{13} \mathrm{C}$ at 38.52 and that for $\mathrm{H}(19)$, thus $\delta 38.52$ was considered to arise from $\mathrm{C}(1)$, and by a process of elimination $\delta 26.58$ was due to $\mathrm{C}(2)$. Other correlations confirming these assignments are given in Table 5. The assignments for $\mathbf{2}$ and $\mathbf{9 - 1 2}$ were then obtained using the assignments for $\mathbf{1}$ and the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ and $\mathbf{9 - 1 2}$, obtained at 62.9 MHz , see Table 4 .

Fig. 3
The two phenyl groups in solid $\mathbf{9}$, as shown by the crystal structure determination, have quite different locations, with one of the phenyl groups being placed under the A ring of the cholestene moiety. The phenyl ring diastereotopy is maintained in CDCl_{3} solution up to $44^{\circ} \mathrm{C}$; coalescence of the aryl signals in the ${ }^{13} \mathrm{C}$ NMR spectra occurs at that temperature.

The very much favoured conformation in solution of a cyclohexyl-SnR S_{3} derivative (e.g. 17: $\mathrm{R}=\mathrm{Me}$ or $\mathrm{Ph} ; \mathrm{R}^{\prime}=\mathrm{H}$, see Fig. 3), has the organostannyl substituent in an equatorial site of a chair-shaped cyclohexane ring, i.e. conformation b, Fig. 3. ${ }^{11 a, 20,21}$ It is only at $-69^{\circ} \mathrm{C}$ that the chair-chair conformation interconversion for ($\mathbf{1 7}: \mathrm{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{H}$) is frozen out: the ${ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right.$) at $-69^{\circ} \mathrm{C}$ for conformer \mathbf{b} (with the equatorially sited $\mathrm{Me}_{3} \mathrm{Sn}$ group) has a value of 65 Hz , in comparison to the average value of 57.7 Hz recorded at equilibrium ${ }^{21}$ at $35^{\circ} \mathrm{C}$. No simple stannylated cyclohexane derivative has yet been reported to exist in solution in a fixed conformation with the organostannyl substituent in an axial position. The extents of the conformations \mathbf{a} and \mathbf{b} of cis-4-R'-cyclohexyl-SnR ${ }_{3}{ }^{11}$ (Fig. 3), at equilibrium can be calculated from the appropriate A factors: values of the A factors for $\mathrm{Me}_{3} \mathrm{Sn}, \mathrm{Ph}_{3} \mathrm{Sn}$ and Me groups have been found to be $1.06,{ }^{21} 1.44^{22}$ and $1.74{ }^{23} \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.

The fused ring molecules, $\mathbf{1 , 2}$ and $\mathbf{9 - 1 2}$, are considered to be rigid molecules in solution. It is anticipated that the conformations of the cholestene rings in solution are similar to those in the solid state. Thus the two ${ }^{3} J\left({ }^{19,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$ values in the ${ }^{13} \mathrm{C}$ NMR spectra for each of the fused-ring 3α - and 3β-stannyl-cholest-5-ene compounds can be related to well-defined $\mathrm{Sn}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ dihedral angles. The $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ dihedral angles were found to be essentially the same in each of the α-derivatives (see Table 2); a similar result is expected for the β-compounds with the $\mathrm{Sn}-\mathrm{C}(3)-$ $\mathrm{C}(4)-\mathrm{C}(5)$ and $\mathrm{Sn}-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ dihedral angles near 180°. As shown in Table 4, both the ${ }^{3} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)$ values, associated with $C(5)$ and $C(1)$, are practically the same in each of the β stannyl derivatives being $69 \pm 1 \mathrm{~Hz}$ for $2,83 \pm 1 \mathrm{~Hz}$ for 11 and $111 \pm 3 \mathrm{~Hz}$ for 12. In contrast for the α-derivatives, ${ }^{3} J\left({ }^{119} \mathrm{Sn}-\right.$ ${ }^{13} \mathrm{C}$) values associated with the $\mathrm{C}(1)$ atoms (alkyl carbon atoms) are generally $c a$. twice the values for the $\mathrm{C}(5)$ (olefinic) carbon atoms, being 15 and 8 in $\mathbf{1 , 2 0}$ and 11 in $\mathbf{9}$, and 28 and 16 Hz in 10. The $\mathrm{Sn}-\mathrm{C}(3) \sigma$-bonds in the α-derivatives (but not in the β-derivatives) are almost ideally situated to interact with the $C(5)-C(6) \pi$-orbitals; this $\sigma-\pi$ interaction must result in the reduced coupling constants.

Karplus type equations, relating coupling constants, ${ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)$, with $\mathrm{Sn}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ dihedral angles, have been established for organostannanes. ${ }^{24}$ The original correlations were

Table $4{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{Sn}$ NMR data measured in CDCl_{3} solution. ${ }^{13} \mathrm{C}$ NMR data for $\mathbf{1}$ at 150.8 MHz , all others at $62.9 \mathrm{MHz} ; \delta^{19} \mathrm{Sn}$ values measured at 93.3 MHz .

Comp. (Z)	C atom $\delta^{13} \mathrm{C} / \mathrm{ppm}[J(\mathrm{Sn}-\mathrm{C})] / \mathrm{Hz}$																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
14 ($\beta-\mathrm{OH}$)	37.5	31.6	71.3	42.4	141.2	121.3	32.0	32.0	50.5	36.5	21.2	28.3	42.4	56.9	24.3	40.0	56.5
$1\left(\alpha-\mathrm{SnPh}_{3}\right)$	$\begin{aligned} & 38.52 \\ & {[15]^{a}} \end{aligned}$	$\begin{aligned} & 26.58 \\ & {[13]^{a}} \end{aligned}$	$\begin{aligned} & 31.93 \\ & {[435,416]^{b}} \end{aligned}$	$\begin{aligned} & 36.67 \\ & {[11]^{a}} \end{aligned}$	${ }^{141.83}{ }^{a}$	121.26	31.51	31.38	48.80	37.15	20.44	28.16	42.15	56.82	24.14	39.71	56.10
$2\left(\beta-\mathrm{SnPh}_{3}\right)$	$\begin{aligned} & 42.3 \\ & { }^{[70]^{a}} \end{aligned}$	$\begin{gathered} 27.6 \\ {[18]^{a}} \end{gathered}$	$\begin{aligned} & 29.3 \\ & {[424,405]^{b}} \end{aligned}$	$\begin{aligned} & 37.5 \\ & { }^{[16]^{a}} \end{aligned}$	$\begin{aligned} & 142.1 \\ & {[68,65]^{b}} \end{aligned}$	119.0	31.8	31.6	50.6	37.5	20.6	28.2	42.2	56.8	24.2	39.7	56.1
$9\left(\alpha-\mathrm{SnPh}_{2} \mathrm{I}\right)$	$\begin{aligned} & 38.5 \\ & {[20]^{a}} \end{aligned}$	$\begin{aligned} & 26.1 \\ & {[14]^{a}} \end{aligned}$	$\begin{aligned} & 40.2 \\ & {[445,427]^{b}} \end{aligned}$	$\begin{aligned} & 36.1 \\ & \text { [nd] } \end{aligned}$	$\begin{aligned} & 141.0 \\ & {[11]^{a}} \\ & \hline \end{aligned}$	122.4	31.5	31.2	48.8	37.2	20.4	28.1	42.1	56.7	24.1	39.6	56.0
$11\left(3-\mathrm{SnPh}_{2} \mathrm{I}\right)$	$\begin{aligned} & 41.6 \\ & {[83]^{a}} \end{aligned}$	$\begin{aligned} & 27.2 \\ & { }^{272]^{a}} \end{aligned}$	$\begin{aligned} & 33.7 \\ & {[422,403]^{b}} \end{aligned}$	$\begin{gathered} 37.4 \\ {[19]^{a}} \end{gathered}$	$\begin{aligned} & 143.0 \\ & {[84,80]^{b}} \end{aligned}$	120.0	31.7	31.6	50.5	37.0	20.6	28.1	42.2	56.7	24.1	39.6	56.0
$10\left(\alpha-\mathrm{SnPhI}_{2}\right)$	38.9 $[28]^{a}$	${ }^{25.7}{ }^{\text {[12] }}$	$\begin{aligned} & 51.5 \\ & {[461,440]^{b}} \end{aligned}$	$\begin{aligned} & 35.5 \\ & \text { [nd] } \end{aligned}$	$\begin{aligned} & 140.1 \\ & {[16]^{a}} \end{aligned}$	123.7	31.3	31.1	49.0	37.3	20.4	28.1	42.0	56.6	24.1	39.5	56.0
$12\left(3-\mathrm{SnPhI}_{2}\right)$	$\begin{aligned} & 41.0 \\ & {[114,109]^{b}} \end{aligned}$	$\begin{aligned} & 26.9 \\ & {[28]^{a}} \end{aligned}$	$\begin{aligned} & 41.0 \\ & {[428,409]^{b}} \end{aligned}$	$\begin{gathered} 36.5 \\ {[25]^{a}} \end{gathered}$	$\begin{aligned} & 141.7 \\ & {[108,103]^{b}} \end{aligned}$	121.2	31.8	31.6	$\begin{gathered} 50.3 \\ {[11]^{a}} \end{gathered}$	$\begin{gathered} 37.3 \\ {[11]^{a}} \end{gathered}$	20.6	28.1	42.2	56.6	24.1	39.6	56.0
13 (β - $\mathrm{OSO}_{2} \mathrm{Tol}$)	38.7	27.9	82.3	36.2	138.7	123.4	31.7	31.6	49.8	36.7	20.9	28.4	42.1	56.5	24.1	39.5	56.0
15 (β - $\mathrm{OSO}_{2} \mathrm{Me}$)	38.6	27.9	81.9	36.2	138.5	123.7	31.7	31.6	49.2	36.8	20.9	28.8	42.2	56.5	24.1	39.5	56.0
16 (β-Cl)	39.0	33.3	60.2	43.3	140.7	122.4	31.7	31.6	49.9	36.2	20.8	28.1	42.2	56.6	24.1	39.6	56.0

C atom $\delta^{13} \mathrm{C} / \mathrm{ppm}[J(\mathrm{Sn}-\mathrm{C})] / \mathrm{Hz}$

Comp. (Z)	18	19	20	21	22	23	24	25	26	27	C_{i}	C_{o}	C_{m}	C_{p}	Me	Sn atom $\delta{ }^{119} \mathrm{Sn} / \mathrm{ppm}$
14 (β-OH)	12.0	19.4	35.8	18.8	36.4	24.1	39.6	28.0	22.6	22.9						
$1\left(\alpha-\mathrm{SnPh}_{3}\right)$	11.73	19.79	35.72	18.60	36.13	23.82	39.44	27.91	22.47	22.74	$\begin{aligned} & 140.13 \\ & {[450,430]^{b}} \end{aligned}$	$\begin{aligned} & 137.29 \\ & {[34]^{a}} \end{aligned}$	$\begin{aligned} & 128.15 \\ & {[46]^{a}} \end{aligned}$	${ }_{[5]^{a}}^{128.36}$		
$2\left(\beta-\mathrm{SnPh}_{3}\right)$	11.8	19.4	35.7	18.7	36.1	23.8	39.5	28.0	22.5	22.8	$\begin{aligned} & 138.5 \\ & {[459,439]^{b}} \end{aligned}$	$\begin{aligned} & 137.3 \\ & {[33]^{a}} \end{aligned}$	$\begin{aligned} & 128.4 \\ & {[46]^{a}} \end{aligned}$	$\begin{aligned} & 128.7 \\ & {[\text { ca. } 5]^{a}} \end{aligned}$		$\begin{aligned} & -114.8 \\ & -117.1 \end{aligned}$
$9\left(\alpha-\mathrm{SnPh}_{2} \mathrm{I}\right)$	11.7	19.6	35.7	18.6	36.2	23.8	39.4	27.9	22.4	22.7	$\begin{aligned} & 138.8,138.7 \\ & \text { [nd] } \end{aligned}$	$\begin{aligned} & 136.4,136.3 \\ & {[46]^{a}} \end{aligned}$	$\begin{aligned} & 128.6 \\ & {[54]^{a}} \end{aligned}$	$\begin{aligned} & 129.5,129.4 \\ & \text { [nd] } \end{aligned}$		-52.4
$11\left(\beta-\mathrm{SnPh}_{2} \mathrm{I}\right)$	11.8	19.2	35.7	18.6	36.1	23.7	39.4	27.9	22.5	22.7	$\begin{aligned} & 136.9 \\ & {[458,438]^{b}} \end{aligned}$	$\begin{aligned} & 136.3 \\ & {[44]^{a}} \end{aligned}$	$\begin{aligned} & 128.8 \\ & {[55,53]^{b}} \end{aligned}$	$\begin{aligned} & 129.8 \\ & {[12]^{a}} \end{aligned}$		
$10\left(\alpha-\mathrm{SnPhI}_{2}\right)$	11.7	19.4	35.7	18.6	36.1	23.8	39.4	27.9	22.4	22.7	$\begin{aligned} & 140.2 \\ & \text { [nd] } \end{aligned}$	$\begin{aligned} & 134.8 \\ & {[63,60]^{b}} \end{aligned}$	$\begin{aligned} & 128.6 \\ & {[69,67]^{b}} \end{aligned}$	$\begin{aligned} & 130.3 \\ & {[15]^{a}} \end{aligned}$		-101.9
$12\left(\beta-\mathrm{SnPhI}_{2}\right)$	11.7	19.2	35.7	18.6	36.1	23.7	39.4	27.9	22.5	22.7	$\begin{aligned} & 136.9 \\ & \text { [nd] } \end{aligned}$	$\begin{aligned} & 135.0 \\ & {[58,56]^{b}} \end{aligned}$	$\begin{aligned} & 129.0 \\ & {[66,63]^{b}} \end{aligned}$	$\begin{aligned} & 130.8 \\ & {[14]^{a}} \end{aligned}$		-116.6
13 (β - $\mathrm{OSO}_{2} \mathrm{Tol}$)	11.7	19.0	35.6	18.6	36.0	23.7	39.4	28.1	22.4	22.7	134.5	129.6	127.5	144.3	21.5	
15 (β - $\mathrm{OSO}_{2} \mathrm{Me}$)	11.7	19.1	35.6	18.6	36.0	23.7	39.4	28.1	22.4	22.7					39.0	
16 ($\beta-\mathrm{Cl}$)	11.7	19.1	35.6	18.6	36.1	23.7	39.4	28.1	22.4	22.7						

[^0]Table 5 HMQC and HMBC NMR Spectra for 1

C	$\begin{aligned} & \delta^{13} \mathrm{C} \\ & (150.8 \mathrm{MHz}) \end{aligned}$	mult	$\begin{aligned} & J_{\mathrm{C}-\mathrm{Sn}^{\prime}}^{(\mathrm{Hz})} \end{aligned}$	$\begin{aligned} & \delta^{1} \mathrm{H} \\ & (599.6 \mathrm{MHz}) \end{aligned}$	mult (J in Hz)	HMBC
1	38.52	t	15	1.70	ddm J 13.4, 1.6	H2, H19
				1.23	dd J 13.3, 3.3	
2	26.58	t	13	2.18	dddd J 14.0, 14.0, 3.9, 3.9	H1 ${ }^{\prime}$, H4 ${ }^{\prime}$
				2.09	$\mathrm{dm} J 13.2$	
3	31.93	d	435	2.76	dddd $J 3.9,3.9,2.1,2.1$	H1/1', H4'
			416			
4	36.67	t	11	2.90	dq J 14.1, 2.9	H2, H6
				2.45	dt J 14.4, 1.7	
5	141.83	s	8			H4'
6	121.26	d		5.14	dd $J 3.4,1.8$	H4'
7	31.51	t		1.86	m	H6, H9, H14
				1.30	m	
8	31.38	d		1.35	dd J 10.9, 5.0	H6, H9, H11, H14
9	48.80	d		0.49	ddd J 10.9, 10.9, 7.5	H1', H8, H11, H12, H19
10	37.15	s				H1', H4', H6, H9, H19
11	20.44	t		1.32	m	
12	28.16	t		1.88	m	H17
				1.56	m	
13	42.15	s				H14, H15', H16, H17, H18
14	56.82	d		0.80	ddd J 12.7, 10.7, 7.2	H8, H15', H16, H18
15	24.14	t		1.56	m	
				1.04	m	
16	39.71	t		1.94	dt J 12.4, 3.5	H15
				0.98	m	
17	56.10	d		1.08	bq $J 9.5$	H16, H21, H22
18	11.73	q		0.65	s	H14, H17
19	19.79	q		1.00	s	H1', H9
20	35.72	d		1.39	m	H17, H21
21	18.60	q		0.94	d $J 6.5$	H17, H20, H22/22'
22	36.13	t		1.39	m	
				1.04	m	
23	23.82	t		1.39	m	H24
				1.18	m	
24	39.44	t		1.18	m	H26, H27
25	27.91	d		1.28	m	H26, H27
26	22.47	q		0.91	d $J 6.5$	H24, H27
27	22.74	q		0.92	d $J 6.6$	H24, H26
C_{i}	140.13	s	$\begin{gathered} 450,43 \\ 0 \end{gathered}$			
C_{o}	137.29	d	34	7.58	m	
$\mathrm{C}_{\text {m }}$	128.15	d	46	7.36	m	
C_{p}	128.36	d	5	7.36	m	

Fig. 4 Plot of torsion angle, $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{Sn} \theta$ against ${ }^{3} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right) / \mathrm{Hz}$. Continuous plot is for $\mathrm{Me}_{3} \mathrm{Sn}$ derivatives. ${ }^{24}$
developed by Kuivila and co-workers using data for $\mathrm{Me}_{3} \mathrm{Sn}$ derivatives of bi- and poly-cycloalkanes, Fig. 4. As the tincarbon coupling constants depend on the substituents on tin, e.g. see the differences in the ${ }^{3} J(\mathrm{Sn}-\mathrm{C})$ values for $\mathbf{1 , 9} 9$ and 10, there is a need to establish Karplus type correlations for other stannyl systems, in particular the widely studied phenylstannyl derivatives. However, ${ }^{3} J(\mathrm{Sn}-\mathrm{C})$ data, linked with precise values for dihedral angles, remain limited for $\mathrm{Ph}_{3} \mathrm{Sn}$ derivatives: apart from the data obtained in this study, Rahm et al. have obtained ${ }^{3} J(\mathrm{Sn}-\mathrm{C})$ data for 2-exo- and 2-endo-triphenylstannylnorbornanes. ${ }^{25}$ These values are assembled in Fig. 4. The ${ }^{3} J(\mathrm{Sn}-\mathrm{C})$ data used for the α-derivatives in Fig. 4 relate only to $\mathrm{C}(1)$ since the data for $\mathrm{C}(5)$ are affected by the $\mathrm{C}(5)-\mathrm{C}(6) \pi$-bond. Modified Karplus equations, with terms involving the electronegativities of substituents, have been successfully developed for proton-proton couplings; ${ }^{26}$ a modified Karplus equation, taking into account additional factors such as interactions of $\mathrm{Sn}-\mathrm{C}$ bonds with π-bonds, may be required for tin-carbon couplings in organostannanes.

Experimental

Melting points were measured using a Kofler hot-plate microscope and are uncorrected. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were generally recorded on a Bruker 250 MHz instrument: the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1}$ were also obtained on a 600 MHz instrument by the EPSRC NMR service, based at the University of Edinburgh. J Values are given in Hz. IR spectra
were recorded on a Nicolet 205 Fourier-transform instrument. Ether refers to diethyl ether. X-Ray data for 9 and $\mathbf{1 0}$ were collected at 120 K and 150 K , respectively, by the EPSRC service, based at the University of Wales, Cardiff.

3p-Tosyloxycholest-5-ene (cholesteryl toluene- \boldsymbol{p}-sulfonate) 13

Toluene- p-sulfonyl chloride ($14.6 \mathrm{~g}, 0.076 \mathrm{~mol}$) was added to a solution of cholesterol $14(14.6 \mathrm{~g}, 0.038 \mathrm{~mol})$ in dry pyridine (17 cm^{3}). The solution was left standing overnight at room temperature after which time needles were produced. Ether was added to dissolve the solid, and the resulting solution was washed with water, dried and evaporated in vacuo. Recrystallisation of the residue from acetone yielded the product $(15.4 \mathrm{~g}$, $75.6 \%)$, mp $132-134{ }^{\circ} \mathrm{C}$ (lit., ${ }^{27} \mathrm{mp} 131.5-132.5^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.67 (s, 3H, Me-18), 0.87 (d, 6H, J 6.6, Me-26 and Me-27), 0.91 (d, 3H, $J 6.5, \mathrm{Me}-21$), 0.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-19$), 1.05-2.80 (m, 26 H), 2.46 (s, $3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} M e-p$), 4.3-4.4 (m, 1H, J5.6, H-3), 5.31 (d, 1H, J5.2, H-6), 7.34 (d, 2H, J 8.0, aryl-H), 7.8 (d, 2H, J 8.0 , aryl-H). ${ }^{13} \mathrm{C}$ NMR data are displayed in Table 4.

3p-Mesyloxycholest-5-ene (cholesteryl methanesulfonate) $\mathbf{1 5}$

Methanesulfonyl chloride ($5.4 \mathrm{~cm}^{3}$) was added to a solution of $14(16.4 \mathrm{~g}, 0.42 \mathrm{~mol})$ in dry pyridine. The solution was left overnight at $-5^{\circ} \mathrm{C}$ before being allowed to return to room temperature and extracted with ether. The ether extract was washed with water and evaporated in vacuo. The resulting solid was further washed with water. Ether and methanol were added and the solution cooled to $-5^{\circ} \mathrm{C}$ to yield the product (15.1 g , $81.6 \%), \mathrm{mp} 120-122^{\circ} \mathrm{C}\left(\right.$ lit., $\left.{ }^{28} \mathrm{mp} 121-123{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.68$ (s, 3H, Me-18), 0.86 (d, 3H, J 6.6, Me-26), 0.87 (d, 3H, J 6.6, Me-27), 0.91 (d, 3H, J 6.5, Me-21), 1.02 (s, 3H, Me-19), 1.06 $2.73(\mathrm{~m}, 26 \mathrm{H}), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSO}_{2}\right), 4.46-4.59(\mathrm{~m}, 1 \mathrm{H}, J 6.3$, $\mathrm{H}-3), 5.42$ (d, 1H, J 5.1, H-6). ${ }^{13} \mathrm{C}$ NMR data are displayed in Table 4.

3β-Chlorocholest-5-ene (cholesteryl chloride) $\mathbf{1 6}^{29,30}$

A mixture of $\mathbf{1 4}(12.5 \mathrm{~g}, 32 \mathrm{mmol})$ and thionyl chloride (15 ml , 0.2 mol) was stirred for 24 h at $0^{\circ} \mathrm{C}$. The reaction mixture was dissolved in ether and water was added until gas evolution ceased. The ether layer was collected, washed, dried over magnesium sulfate and evacuated under reduced pressure. The residue was recrystallised from acetone to yield $8.9 \mathrm{~g}(67.9 \%)$ of a yellow solid, $\mathrm{mp} 93-95^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.68$ (s, $3 \mathrm{H}, \mathrm{Me}-18$), 0.86 (d, 3H, J 6.6, Me-26), 0.87 (d, 3H, J 6.6, Me-27), 0.91 (d, 3H, J 6.5, Me-21), 1.03 (s, 3H, Me-19), 1.06-2.62 (m, 26H), 3.7-3.8 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3), 5.36(\mathrm{~d}, 1 \mathrm{H}, J 5.2, \mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR data are displayed in Table 4.

3a-Triphenylstannylcholest-5-ene 1

Triphenylstannyllithium was prepared ${ }^{31}$ from $\operatorname{Li}(1.6 \mathrm{~g}, 0.23 \mathrm{~mol})$ and triphenyltin chloride ($10.0 \mathrm{~g}, 0.023 \mathrm{~mol}$) in anhydrous THF ($30 \mathrm{~cm}^{3}$) in an ultrasonic bath with a typical reaction time of 18 h. The olive-green solution of triphenylstannyllithium was filtered through glass-wool, cooled to $-68^{\circ} \mathrm{C}$ (acetone-ice slush bath) and $\mathbf{1 3}(5.0 \mathrm{~g}, 0.007 \mathrm{~mol})$ in dry THF $\left(25 \mathrm{~cm}^{3}\right)$ added. The reaction mixture was stirred under nitrogen and allowed to reach room temperature overnight, hydrolysed with saturated aqueous ammonium chloride and extracted with ether. The ether extract was washed with water, dried over anhydrous magnesium sulfate and evaporated in vacuo to give an oil. The oil was dissolved in ether, filtered to remove the insoluble hexaphenylditin by-product, and the filtrate evaporated. The resultant oil was chromatographed on silica preparatory plates [eluent 5-10\% ethyl acetate-light petroleum (bp $60-80^{\circ} \mathrm{C}$)]. The top band on the plates was collected as an oil and was crystallised from chloroform and ethanol (1:5) as colourless plates ($1.46 \mathrm{~g}, 29 \%$), mp $88-90^{\circ} \mathrm{C}$ (lit., ${ }^{29} \mathrm{mp} 85-91^{\circ} \mathrm{C}$) (Found: C, $75.3 ; \mathrm{H}, 8.7 \% . \mathrm{C}_{45} \mathrm{H}_{60} \mathrm{Sn}$ requires C, $75.1 ; \mathrm{H}, 8.4 \%$).

A similar reaction of $\mathbf{1 5}$ with $\mathrm{Ph}_{3} \mathrm{SnLi}$ also produced 1. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1}$ were assigned (see Table 2) using HMQC ${ }^{32}$ and HMBC 33 NMR spectra, as well as
by analogy to the ${ }^{13} \mathrm{C}$ NMR shifts of cholesterol. ${ }^{34}{ }^{119} \mathrm{Sn}$ NMR data are displayed in Table 4.

3ß-Triphenylstannylcholest-5-ene 2 (Method 1)

(a) Preparation of cholesterylmagnesium chloride. A concentrated solution of cholesteryl chloride $\mathbf{1 6}(2.0 \mathrm{~g})$ in anhydrous THF ($2 \mathrm{~cm}^{3}$) was added to magnesium ribbon $(1.2 \mathrm{~g}, 0.049$ mol), activated by iodine. The reaction mixture was gently heated and the remaining cholesteryl chloride (in total 10.0 g , 0.025 mol) in anhydrous THF added. The solution was refluxed for 4 h and used immediately.
(b) Reaction of the Grignard reagent. To the cholesterylmagnesium chloride solution was added triphenyltin chloride (9.52 $\mathrm{g}, 0.025 \mathrm{~mol}$) in anhydrous THF. The reaction mixture was refluxed for 24 h , and hydrolysed with saturated aqueous ammonium chloride. The ether layer was collected, washed with saturated aqueous sodium hydrogen carbonate, dried over magnesium sulfate and evaporated in vacuo to leave an oil. The oil was purified by column chromatography (eluent CHCl_{3}), followed by recrystallisation from dichloromethane-ethanol or acetone to yield colourless needles, $\mathrm{mp} 151-152^{\circ} \mathrm{C}$.

3B-Triphenylstannylcholest-5-ene 2 (Method 2)

A reaction mixture containing 15 ($3.8 \mathrm{~g}, 0.0098 \mathrm{~mol}$), triphenyltin chloride ($4 \mathrm{~g}, 0.0098 \mathrm{~mol}$) and magnesium ribbon $(0.61 \mathrm{~g}$, 0.025 mol), activated by iodine, in anhydrous THF was refluxed until TLC [eluent: 10% ethyl acetate-light petroleum (bp 60$80^{\circ} \mathrm{C}$)] indicated consumption of the cholesteryl chloride. The solution was hydrolysed with saturated aqueous ammonium chloride and extracted with ether. The ether layer was washed with saturated aqueous sodium hydrogen carbonate and dried over magnesium sulfate. Evaporation of the solvent in vacuo left a yellow coloured oil. The oil was redissolved in ether and the solution was left to allow the remaining hexaphenylditin byproduct to precipitate out. The ether solution was filtered and evacuated in vacuo to leave a glassy oil, which was crystallised from dichloromethane-ethanol (1:5) to give needles, mp 147$148^{\circ} \mathrm{C}$ (lit. $2^{29} \mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$) (Found: C, $75.3 ; \mathrm{H}, 8.7 \%$. $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{Sn}$ requires C, $\left.75.1 ; \mathrm{H}, 8.4 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.66$ (s, 3 H , Me-18), 0.85 (d, 3H, J6.5, Me-26), 0.86 (d, 3H, J6.6, Me-27), 0.90 (d, 3H, J 6.5, Me-21), 0.96 (s, 3H, Me-19), 0.98-2.72 (m, 26 H), 5.24 (d, $1 \mathrm{H}, J 5.2, \mathrm{H}-6$), $7.34-7.39(\mathrm{~m}, 10 \mathrm{H}, p-+m$-aryl $\mathrm{H}), 7.40-7.62\left(\mathrm{~m}, 5 \mathrm{H}, o\right.$-aryl H). ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{Sn}$ NMR data are displayed in Table 4.

Preparation of 3-(iodophenyl)stannylcholest-5-ene derivatives

3α - or 3β-Triphenylstannylcholest-5-ene ($\mathbf{1}$ or $\mathbf{2}$) was dissolved in chloroform and a solution containing a calculated quantity of iodine (1 or 2 mol equiv.) in chloroform was then added dropwise with stirring. The reaction was stirred until all the iodine had reacted. All volatiles were removed under vacuum to leave oily solid residues.

3a-(Iododiphenyl)stannylcholest-5-ene 9. From $\mathbf{1}$ ($0.5 \mathrm{~g}, 0.70$ $\mathrm{mmol})$ and $\mathrm{I}_{2}(0.176 \mathrm{~g}$, was recrystallised from chloroformmethanol as needles, $0.24 \mathrm{~g}, 44.9 \%, \mathrm{mp} 120-121^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.60 (s, 3H Me-18), 0.87 (d, 3H, $J 6.5$, Me-26), 0.87 (d, 3H, J 6.5, Me-27), 0.88 (d, 3H, J 6.4, Me-21), 0.96 (s, 3H, Me-19), $1.00-2.90(\mathrm{~m}, 26 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J 5.0, \mathrm{H}-6), 7.26-7.41(\mathrm{~m}, 10 \mathrm{H}$, p - $+m$-aryl H), $7.51-7.73\left(\mathrm{~m}, 5 \mathrm{H}, o\right.$-aryl H). ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data are displayed in Table 4.
3α-(Diiodophenyl)stannylcholest-5-ene (10). From $1(0.204 \mathrm{~g}$, $0.283 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.144 \mathrm{~g}, 0.567 \mathrm{mmol})$, was crystallised from chloroform-methanol as platelets, $0.14 \mathrm{~g}, 60 \%, \mathrm{mp} 120.5-$ $121.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.60(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.87(\mathrm{~d}, 3 \mathrm{H}, J 6.5$, Me26), 0.87 (d, 3H, $J 6.6, ~ M e-27), ~ 0.88 ~(3 H, ~ d, ~ M e-21, ~ J ~ 6.3 ~ H z), ~$ 0.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-19$), $1.02-3.7$ (m, 26H), $5.40(\mathrm{~d}, 1 \mathrm{H}, J 5.0, \mathrm{H}-6)$, $7.33-7.47(\mathrm{~m}, 10 \mathrm{H}, p-+m$-aryl H), $7.61-7.78$ (m, 5 H , o-aryl H). ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data are displayed in Table 4.

3p-(Iododiphenyl)stannylcholest-5-ene (11). From 2 (0.101 g , $0.14 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.0389 \mathrm{~g}, 0.15 \mathrm{mmol})$, was recrystallised

Table 6 Crystal data and structure refinement for $\mathbf{9}$ and 10

	9	10
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{ISn}$	$\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{I}_{2} \mathrm{Sn}$
Formula weight	769.42	819.22
Temperature (K)	120(2)	150(2)
Wavelength (\AA)	0.71069	0.71069
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1}$	$P 1$
Unit cell dimensions		
a / \AA	14.51(16)	10.141(2)
blA	7.620(13)	10.830(3)
clÅ	16.25(8)	15.518(5)
$a /^{\circ}$	90	88.62(3)
$\beta 1{ }^{\circ}$	99.0(3)	89.30(2)
$\gamma /{ }^{\circ}$	90	63.08(2)
Volume/ $/ \AA^{3}$	1775(21)	1691.4(8)
Z	2	2
Density (calc) ($\mathrm{mg} \mathrm{m}^{-3}$)	1.440	1.609
Absorption coeff. $/ \mathrm{mm}^{-1}$	1.641	2.599
$F(000)$	784	808
Crystal size (mm)	$0.18 \times 0.18 \times 0.35$	$0.41 \times 0.28 \times 0.28$
Theta range $/{ }^{\circ}$	1.75 to 24.93	1.89 to 24.89
Index ranges		
	$-16 \leqslant h \leqslant 15$	$-11 \leqslant h \leqslant 11$
	$-8 \leqslant k \leqslant 5$	$-12 \leqslant k \leqslant 12$
	$0 \leqslant l \leqslant 17$	$-17 \leqslant l \leqslant 13$
Reflections collected	4565	7363
Independent reflections	4565	6133
	[$R($ int $)=0.0748$]	[$R(\mathrm{int}$) $=0.0548$]
Observed reflections [$I>2 \sigma(I)$]	4314	6133
Refinement method	Full-matrix 1.s. on F^{2}	Full-matrix 1.s. on F^{2}
Number of parameters	334	693
Goodness-of-fit on $F^{2}(S)$	1.182	1.142
Final R indices [$I>2 \sigma(I)$]	$R 1=0.0473$	$R 1=0.0459$
	$w R 2=0.1367$	$w R 2=0.1170$
R indices (all data)	$R 1=0.0488$,	$R 1=0.0472$
	$w R 2=0.1372$	$w R 2=0.1190$
Final weighting scheme	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0665 P)^{2}\right]$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0758 P)^{2}\right]$
	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$	where $P=\left(F_{\mathrm{o}}{ }^{2} 2 F_{\mathrm{c}}+{ }^{2}\right) / 3$
Flack x parameter	0.01(5)	-0.04(4)
Residual diffraction max/min $\left(e \AA^{-3}\right)$	1.342/-0.841	1.398/-0.750

from ethanol as needles, $0.08 \mathrm{~g}, 74 \%, \mathrm{mp} 148-149{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-18), 0.86(\mathrm{~d}, 3 \mathrm{H}, J 6.7$, Me-26), 0.86 (d, 3H, J 6.6, Me-27), 0.91 (d, 3H, J 6.5, Me-21), 1.00 (s, 3H, Me-19), 1.03-2.71 (m, 26H), 5.29 (d, 1H, J 3.7, H-6), 7.37-7.50 $\left(\mathrm{m}, 10 \mathrm{H}, p\right.$ - $+m$-aryl H), $7.58-7.76\left(\mathrm{~m}, 5 \mathrm{H}, o\right.$-aryl H). ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data are displayed in Table 4.

3及-(Diiodophenyl)stannylcholest-5-ene (12). From 2 (0.102 g, $0.14 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.0071 \mathrm{~g}, 0.28 \mathrm{mmol})$, was recrystallised from ethanol as platelets, $0.07 \mathrm{~g}, 61 \%, \mathrm{mp} 152-153{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-18), 0.86(\mathrm{~d}, 3 \mathrm{H}, J 6.6, \mathrm{Me}-26), 0.87$ (d, $3 \mathrm{H}, J 6.5$, Me-27), 0.91 (d, $3 \mathrm{H}, J 6.5$, Me-21), 1.03 (s, 3 H , Me-19), 1.06-2.64 (m, 26H), 5.34 (d, 1H, J5.2, H-6), 7.36-7.56 $\left(\mathrm{m}, 10 \mathrm{H}, p-+m\right.$-aryl H), $7.57-7.71\left(\mathrm{~m}, 5 \mathrm{H}, o\right.$-aryl H). ${ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data are displayed in Table 4.

Crystal structure determinations of 9 and $10 \dagger$

The colourless crystals used in the analyses were grown from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$. The unit cell and intensity data were collected on a Delft Instruments FAST diffractometer with monochromated Mo-Ka radiation using the routines ENDEX, REFINE and MADONL in the MADNES ${ }^{35}$ software and processed using ABSMAD; ${ }^{36}$ detailed procedures have been described. ${ }^{37}$
\dagger Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, available via the RSC Web pages (http://chemistry.rsc.org/rsc/plpifa.htm). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/162.

Compound 9. Corrections were made for Lorentz and polarisation effects. Corrections were made for absorptions effects using the empirical absorption correction program, XABS2; ${ }^{38}$ (correction range $0.84-1.00$). The positions of the tin and iodine were located from a Patterson vector map using SHELXS86. ${ }^{22}$ The positions of the remaining non-hydrogen atoms were located on successive difference Fourier maps using SHELXL93. ${ }^{39}$ The positions of the hydrogen atoms were calculated from geometrical calculations. During refinement hydrogens were allowed to ride on their attached carbon atoms. Full-matrix least-squares calculations with anisotropic displacement parameters for non-hydrogen atoms and common isotropic displacement parameters according to type (methyl, aromatic, etc.) for hydrogen atoms were calculated. Molecular diagrams were obtained by the program ZORTEP. ${ }^{40}$ Crystal data and structure refinement details are listed in Table 6.

Compound 10. The structure was solved with SIR 92^{41} and refined with SHELXL93. ${ }^{39}$ Corrections were made for absorptions effects using the absorption correction program, DIFABS; $;^{42}$ (correction range $0.82-1.01$). The tin, carbon and iodine atoms were refined with anisotropic displacement parameters and the hydrogen atoms were allowed to ride on their attached atoms with common isotropic displacement parameters for the methyl and non-methyl hydrogens. Molecular diagrams were obtained by the program ZORTEP. ${ }^{40}$ Crystal data and structure refinement details are listed in Table 6.

Acknowledgements

The authors thank the EPSRC NMR and X-ray data collection services, based at the Universities of Edinburgh and Wales, Cardiff, respectively.

References

1 M. Gielen, P. Lelieveld, D. de Vos, H. Pan, R. Willem, M. Biesemans and H. H. Fiebig, Inorg. Chim. Acta, 1992, 196, 115.
2 M. Gielen, R. Willem, T. Mancilla, J. Ramharter and E. Joosen, Silicon, Germanium, Tin Lead Cmpd., 1986, 9, 349; S. V. Kanakkanatt, in Tin as a Vital Nutrient; Implications in cancer Prophylaxis and other Physiological Processes, ed. N. F. Cardarelli, CRC Press, Boca Raton, FL, 1986, pp. 189-195; N. F. Cardarelli, in Tin as a Vital Nutrient; Implications in cancer Prophylaxis and other Physiological Processes, ed. N. F. Cardarelli, CRC Press, Boca Raton, FL, 1986, pp. 199-209.
3 H.-S. Dang and A. G. Davies, Synthesis, 1992, 833.
4 (a) H. Pan, R. Willem, J. Meunier-Piret and M. Gielen, Organometallics, 1990, 9, 2199; (b) F. Kayser, M. Biesemans, H. Pan, M. Gielen and R. Willem, Magn. Reson. Chem., 1992, 30, 877.

5 H. J. Buchanan, P. J. Cox and J. L. Wardell, J. Chem. Cryst., 1996, 26, 219
6 F. Kayser, M. Bieseman, H. Pan, M. Gielen and R. Willem, J. Chem. Soc., Perkin Trans. 2, 1994, 297.

7 H. Zimmer and A. V. Bayless, Tetrahedron Lett., 1970, 259.
8 A. Saxena, F. Huber, L. Pellerito and A. Girasolo, Appl. Organomet. Chem., 1987, 1, 413.
9 N. F. Cardarelli and S. V. Kanakkannatt, USP 4541 956, 1985.
10 K. Ruitenberg, H. Westmijze, J. Meijer, C. J. Elsevier and P. Mermeer, J. Organomet. Chem., 1983, 241, 417.

11 (a) W. Kitching, H. A. Olszowy and K. Harvey, J. Org. Chem., 1982, 47, 1893; (b) ibid., 1981, 46, 2423.
12 G. F. Smith, H. G. Kiuvila, R. Simon and L. Sultan, J. Am. Chem. Soc., 1981, 103, 833.
13 M. Pereyre, J. P. Quintard and A. Rahm, in Tin in Organic Synthesis, Butterworths, 1987.
14 W. Kitching, H. Olszowy, J. Waugh and D. Doddrell, J. Org. Chem., 1978, 43, 898.
15 G. S. Koermer, M. L. Hall and T. G. Taylor, J. Am. Chem. Soc., 1972, 94, 7205.
16 F. R. Jensen and K. L. Nakamaye, J. Am. Chem. Soc., 1966, 88, 3437.

17 L. N. Zakharov, B. I. Petrov, V. A. Lebedev, E. A. Kuzmin and N. V. Belov, Kristallografiya, 1978, 23, 1049; V. Cody and E. R. Corey, J. Organomet. Chem., 1969, 19, 359.
18 S. M. S. V. Doidge-Harrison, R. A. Howie, J. N. Low and J. L. Wardell, J. Chem. Cryst., 1997, 27, 291.
19 P. J. Cox, H. J. Buchanan and J. L. Wardell, Acta Crystallogr, Sect. C, 1996, 52, 2111.
20 W. Kitching, M. Marriott, W. Adcock and D. Doddrell, J. Org. Chem., 1976, 41, 1673.

21 W. Kitching, D. Doddrell and J. B. Grutzner, J. Organomet. Chem., 1976, 107, C5.
22 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
23 H. Booth and J. R. Everett, J. Chem. Soc., Chem. Commun., 1976, 278; F. A. L. Anett, C. N. Bradley and G. W. Buchanan, J. Am. Chem. Soc., 1971, 93, 258.
24 D. Doddrell, I. Burfitt, W. Kitching, M. Bullpitt, C.-H. Lee, R. J. Mynott, J. L. Considine, H. G. Kuivila and R. H. Sarma, J. Am. Chem. Soc., 1974, 76, 1640; B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 1985, 16, 73.
25 A. Rahm, J. Grimeau, M. Petraud and B. Barbe, J. Organomet. Chem., 1985, 286, 297.
26 C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron, 1980, 36, 2783.
27 E. S. Wallis, E. Fernholtz and F. T. Gephart, J. Am. Chem. Soc., 1937, 59, 137.
28 B. Helferich and E. Gunther, Ber., 1939, 72B, 338.
29 A. Bayless, Ph.D. Thesis, University of Cincinnatti, 1968.
30 O. Diels and P. Blumberg, Ber., 1911, 44, 2847.
31 C. Tamborski, F. E. Ford and E. J. Soloski, J. Org. Chem., 1963, 28, 181.

32 A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565.
33 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
34 E. Breitmaier and W. Voelter, in Carbon-13 NMR Spectroscopy, VCH, Berlin, 1989
35 J. W. Pflugrath and A. Messerschmidt, MADNESS, Version 11, September 1989, Distributed by Delft Instruments, Delft, The Netherlands.
36 A. I. Karaulov, ABSMAD, Program for FAST Data Processing, University of Wales, Cardiff.
37 J. A. Darr, S. R. Drake, M. B. Hursthouse and K. M. A. Malik, Inorg. Chem., 1993, 32, 5704.
38 S. Parkin, B. Moezzi and H. Hope, J. Appl. Cryst., 1995, 28, 53.
39 G. M. Sheldrick, SHELXL-93, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1993.
40 L. Zsolnai, ZORTEP, An interactive ORTEP program, University of Heidelberg, Germany, 1996.
41 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Cryst., 1994, 27, 435.

42 N. Walker and D. Stuart, DIFABS, Acta Crystallogr., Sect. A, 1983, 39, 158.

Paper 7/03596I
Received 23rd May 1997
Accepted 22nd August 1997

[^0]: ${ }^{a} J\left({ }^{119-117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)(\mathrm{Hz}) ;{ }^{b} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)\left(\mathrm{Hz}, J\left({ }^{117} \mathrm{Sn}^{-13} \mathrm{C}\right)(\mathrm{Hz})\right) ; \mathrm{nd}=$ not detected.

